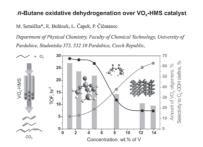


Contents lists available at ScienceDirect

Journal of Molecular Catalysis A: Chemical

journal homepage: www.elsevier.com/locate/molcata

Contents

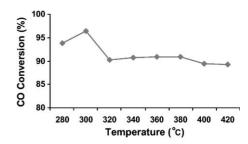

Articles

M. Setnička, R. Bulánek, L. Čapek, P. Čičmanec

Journal of Molecular Catalysis A: Chemical 344 (2011) 1

n-Butane oxidative dehydrogenation over VO_{χ} -HMS catalys

► VO_x units on mesoporous HMS were studied by means of analytic techniques. ► Monomeric VO_x units play role of most active and selective site in ODH of n-butane. ► Amount of monomeric units is comparable for synthesized and impregnated samples. ► Presence of O_h-oligomeric units causes decreasing of selectivity to C4-ODH products. ► Higher selectivity to C4-ODH products exhibit samples prepared by direct synthesis.



Ali Reza Salehi Rad, Maryam behzad khoshgouei, Ali Reza Rezvani

Journal of Molecular Catalysis A: Chemical 344 (2011) 11

Water gas shift reaction over $Zn-Ni/SiO_2$ catalyst prepared from $[Zn(H_2O)_6]_2[Ni(NCS)_6]\cdot H_2O/SiO_2$ precursor

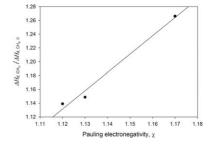
▶ The method of Zn–Ni/SiO $_2$ catalyst preparation is a simple and suitable way. ▶ The Zn–Ni catalyst has the high catalytic activity for WGS reaction at 280–420 °C. This catalyst presents higher activity than those prepared from other methods.

Mannar R. Maurya, Manisha Bisht, Fernando Avecilla

Journal of Molecular Catalysis A: Chemical 344 (2011) 18

Synthesis, characterization and catalytic activities of vanadium complexes containing ONN donor ligand derived from 2-aminoethylpyridine

▶ Synthesis and characterization of oxidovanadium(IV and V) complexes with new ligand derived from pyridoxal and 2-aminoethylpyridine (Hpydx-aepy). ▶ Structure of [V^{IV}O(acac)(pydx-aepy)] (1) has been solved by single crystal X-ray. ▶ Formation of the peroxido complex in solution has also been monitored by electronic absorption spectroscopy. ▶ Encapsulation of [V^VO₂(pydx-aepy)] in the cavity of zeolite-Y and their catalytic activity for the oxidation of styrene, methyl phenyl sulfide, diphenyl sulfide and cyclohexene. ▶ Catalytic results are very good.

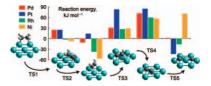

vi Contents

Say Yei Foo, Chin Kui Cheng, Tuan-Huy Nguyen, Adesoji A. Adesina

Journal of Molecular Catalysis A: Chemical 344 (2011) 28

Evaluation of lanthanide-group promoters on Co–Ni/Al₂O₃ catalysts for CH₄ dry reforming

▶ Lanthanide doping did not appear to affect CH_4 and CO_2 consumption rates. ▶ However, rare-earth promotion increased H_2 and CO production rates. ▶ Carbon deposition on the promoted catalysts reduced by up to 50%. ▶ Catalyst attributes correlated well with Pauling electronegativity of the dopants.

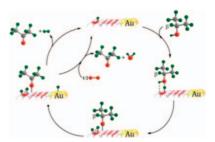


Duygu Basaran, Hristiyan A. Aleksandrov, Zhao-Xu Chen, Zhi-Jian Zhao, Notker Rösch

Journal of Molecular Catalysis A: Chemical 344 (2011) 37

Decomposition of ethylene on transition metal surfaces M(1 1 1). A comparative DFT study of model reactions for M = Pd, Pt, Rh, Ni

▶ Theoretical study of ethylene decomposition on M(1 1 1) surfaces, M = Pd, Pt, Rh, Ni. ▶ Species with more H atoms dehydrogenate more easily than species with fewer H. ▶ Dehydrogenation occurs easier on Ni(1 1 1) and Rh(1 1 1) than on Pd(1 1 1) and Pt(1 1 1). ▶ Reactivity of Pd (Rh) regarding ethylene decomposition similar to that of Pt (Ni). ▶ and Rh favor C_2 decomposition whereas on Ni C_2 formation is favored.



Z. Martinez-Ramirez, S.A. Jimenez-Lam, J.C. Fierro-Gonzalez

Journal of Molecular Catalysis A: Chemical 344 (2011) 47

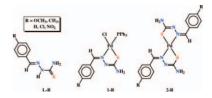
Infrared spectroscopic evidence of adsorbed species during the oxidation of 2-propanol catalyzed by $\gamma\text{-Al}_2O_3\text{-supported gold: Role of gold as a hydrogen-subtractor$

▶ γ -Al₂O₃-supported gold is catalytically active for the oxidation of 2-propanol. ▶ IR spectra of functioning catalysts identified species bonded to the support. ▶ Results suggest that the alcohol is activated on the support. ▶ Role of gold consists of subtracting hydrogen from β -C-H bond of surface alkoxide.

Xiao-Xiang He, Chen Fan, Xiong-Yi Gu, Xing-Gui Zhou, De Chen, Yi-An Zhu

Journal of Molecular Catalysis A: Chemical 344 (2011) 53

Role of CO_2 in ethylbenzene dehydrogenation over $Fe_2O_3(0\ 0\ 0\ 1)$ from first principles

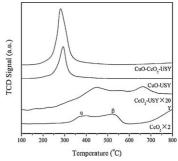

▶ The mechanism for ethylbenzene dehydrogenation in the presence of CO_2 is explored. ▶ Styrene is hard to escape from the most active O-terminated $Fe_2O_3(0\ 0\ 0\ 1)$. ▶ The Fe-terminated surface dominates the reaction, with the coupling mechanism. ▶ Both the one-step and two-step pathways are probable while the former is dominant.

Piyali Paul, Sayanti Datta, Sarmistha Halder, Rama Acharyya, Falguni Basuli, Ray J. Butcher, Shie-Ming Peng, Gene-Hsiang Lee, Alfonso Castineiras, Michael G.B. Drew, Samaresh Bhattacharya

Journal of Molecular Catalysis A: Chemical 344 (2011) 62

Syntheses, structures and efficient catalysis for C–C coupling of some benzaldehyde thiosemicarbazone complexes of palladium

► Reaction of 4-R-benzaldehyde thiosemicarbazones with [Pd(PPh₃)₂Cl₂] afford complexes (**1-R**) containing a thiosemicarbazone, a PPh₃ and a chloride. ► Similar reaction with Na₂[PdCl₄] afford bis-thiosemicarbazone complexes (**2-R**). ► Coordination to Pd is associated with a conformational change around the C=N Bond ► Both **1-R** and **2-R** complexes can efficiently catalyze C-C coupling reactions.


vii

Qinqin Huang, Xiaomin Xue, Renxian Zhou

Journal of Molecular Catalysis A: Chemical 344 (2011) 74

Catalytic behavior and durability of CeO_2 or/and CuO modified USY zeolite catalysts for decomposition of chlorinated volatile organic compounds

▶ The catalytic activity for CVOCs destruction is evidently enhanced over modified USY catalysts. ▶ The high activity is due to high dispersion of CeO_2 or CuO, good oxygen mobility and Lewis acidity. ▶ Modified USY catalysts present high selectivity to HCl and CO_2 formation. ▶ Interaction between CuO and CeO_2 improves the durability of the catalyst in long term reaction.

Savita Khare, Rajendra Chokhare

Journal of Molecular Catalysis A: Chemical 344 (2011) 83

Synthesis, characterization and catalytic activity of Fe(Salen) intercalated $\alpha\mbox{-}zirconium$ phosphate for the oxidation of cyclohexene

▶ Synthesis of a heterogeneous catalyst, α -ZrP·Fe(Salen) by flexible ligand method. ▶ Catalyst characterized by BET, XRD, SEM, EDX, FTIR, AAS and Mössbauer spectroscopy. ▶ Catalytic activation of α -ZrP·Fe(Salen) with dry TBHP for oxidation of cyclohexene. ▶ Study of recycling of the catalyst up to eight cycles.

R.M. Hassan, S.M. Ibrahim, I.A. Zaafarany, A. Fawzy, H.D. Takagi

Journal of Molecular Catalysis A: Chemical 344 (2011) 93

Base-catalyzed oxidation: Kinetics and mechanism of hexacyanoferrate (III) oxidation of methyl cellulose polysaccharide in alkaline solutions

► A kinetic study of the oxidation of some natural polymeric compounds such as methyl cellulose polysaccharides by alkaline ferricyanide (III). ► A novel synthesis of diketo-derivatives of methyl cellulose by an oxidation method. ► Examining the behavior of polysaccharides containing alcoholic groups in aqueous alkaline solutions. ► Elucidation of reaction mechanism for the oxidation process of the cited work.

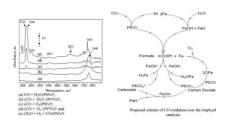
viii Contents

Ruibin Jiang, Wenyue Guo, Ming Li, Houyu Zhu, Lianming Zhao, Xiaqing Lu, Honghong Shan

Journal of Molecular Catalysis A: Chemical 344 (2011) 99

Methanol dehydrogenation on Rh(1 1 1): A density functional and microkinetic modeling study

▶ Rh(1 1 1)-catalyzed methanol dehydrogenation is studied using theory modeling. ▶ The reaction mechanism is identified under two different reaction conditions. ▶ The reason why oxidation does not take place at CH_2O in methanol oxidation is found. ▶ The origin of different mechanisms of the reaction on different VIII metals is found.


Zeinhom M. El-Bahy, Ahmed I. Hanafy, Mohamed M. Ibrahim, Masakazu Anpo

Journal of Molecular Catalysis A: Chemical 344 (2011) 111

In situ FTIR studies of CO oxidation over Fe-free and Fe-promoted PtY catalysts: Effect of water vapor addition

▶ Preparation and characterization of PtY and PtFeY catalysts by ion exchange method. ▶ In situ FTIR studies of CO oxidation, WGS over as prepared and reduced catalysts. ▶ Study the effect of addition of trace amount of water on the oxidation of CO with O_2 . ▶ Addition of H_2O and/or $H_2O + O_2$ enhanced CO removal over Fe-free and Fe-promoted PtY. ▶ Admission of $(CO + O_2 + H_2O)$ mixture increased the adsorbed amount of CO_2 over PtFeY.

Promotion of PtY with Fe oxide and addition of H₂O with O₂ to the surface of the

Rong Wang, Yonghong Li, Ronghui Shi, Meimei Yang

Journal of Molecular Catalysis A: Chemical 344 (2011) 122

Effect of metal–support interaction on the catalytic performance of Ni/Al $_2$ O $_3$ for selective hydrogenation of isoprene

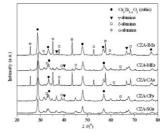
► The different metal–support interactions over two alumina supports were characterized. ► The effect of the different interaction on catalytic performance was explained. ► The weak interaction resisting coke deposition was related to the hydrogenolytic sites.

Alireza Khorshidi, Khalil Tabatabaeian

Journal of Molecular Catalysis A: Chemical 344 (2011) 128

Ruthenium-exchanged FAU-Y zeolite catalyzed improvement in the synthesis of 6*H*-indolo[2,3-*b*]quinolines

► A convenient method for preparation of indoloquinolines is reported. ► RuY as a heterogeneous catalyst resulted in more efficiency. ► Reusability of the solid acid catalyst is also, noticeable.

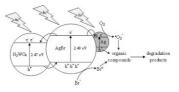

Contents

Qiuyan Wang, Zhenguo Li, Bo Zhao, Guangfeng Li, Renxian Zhou

Journal of Molecular Catalysis A: Chemical 344 (2011) 132

Effect of synthesis method on the properties of ceria–zirconia modified alumina and the catalytic performance of its supported Pd-only three-way catalyst

► The ceria–zirconia modified alumina (CZA) was prepared by five different methods. ► The effect of preparation methods on the structural properties of CZA was studied. ► Coprecipitation with supercritical drying leads to good thermal stability of CZA. ► The corresponding Pd-only three-way catalyst exhibits higher catalytic performance.

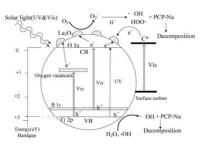


Jing Cao, Bangde Luo, Haili Lin, Shifu Chen

Journal of Molecular Catalysis A: Chemical 344 (2011) 138

Synthesis, characterization and photocatalytic activity of AgBr/H₂WO₄ composite photocatalyst

▶ AgBr/ H_2WO_4 was synthesized by using a facile deposition–precipitation method. ▶ AgBr/ H_2WO_4 displays excellent visible-light photocatalytic activity ($\lambda > 420 \text{ nm}$). ▶ AgBr/ H_2WO_4 possesses good stability after successive 5 cycle experiments. ▶ The resulting ${}^{\bullet}O_2^{}$, Br 0 and h $^+$ played the major roles for MO and RhB degradation.

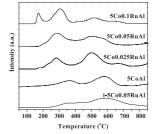


J.W. Liu, R. Han, H.T. Wang, Y. Zhao, W.J. Lu, H.Y. Wu, T.F. Yu, Y.X. Zhang

Journal of Molecular Catalysis A: Chemical 344 (2011) 145

Degradation of PCP-Na with La-B co-doped ${\rm TiO}_2$ series synthesized by the sol-gel hydrothermal method under visible and solar light irradiation

► Novel La-B-TiO₂ synthesized by sol-gel hydrothermal route with high activity. ► Efficient decomposition and dechlorination of PCP-Na under visible and sun light. ► Synergetic effects of La and B implantation. ► Variation of catalytic activity with the action of the dopants in modified system.


Jo-Yong Park, Yun-Jo Lee, Prashant R. Karandikar, Ki-Won Jun, Jong Wook Bae, Kyoung-Su Ha

Journal of Molecular Catalysis A: Chemical 344 (2011) 153

Ru promoted cobalt catalyst on $\gamma\text{-}Al_2O_3$ support: Influence of pre-synthesized nanoparticles on Fischer–Tropsch reaction

► Controlled size $CoRuO_x$ nanoparticles were embedded on γ - Al_2O_3 . ► Intimate contact between Ru and Co increased by pre-synthesis of nanoparticles. ► 5CoxRuAl catalysts show superior activity in Fischer–Tropsch reaction. ► Conventional catalyst with equal amount of Co and Ru show comparatively poor result. ► Increased interaction of

Ru and Co in 5CoxRuAl enhances catalyst activity.

